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A TECHNICAL DESCRIPTION OF THE
NAVDAS ADJOINT SYSTEM

1 Introduction

Adjoint versions of atmospheric forecast models have been developed and applied,
beginning in the mid 1980s, to a wide variety of applications in numerical weather
prediction, including data assimilation, sensitivity studies, singular vector generation
and targeted (or adaptive) observing. The literature describing adjoint methods in
numerical weather prediction is now quite extensive, and a few selected papers on
these topics include Talagrand and Courtier (1987), Buizza et al. (1993), Langland
et al. (1995), Rabier et al (1996), Errico (1997), Gelaro et al. (1998), Palmer et
al. (1998), Bergot et al. (1999), Langland et al. (2002), Bergot and Doerenbecher
(2002), and Leutbecher et al. (2002). More recently, it has been shown (Baker and
Daley 2000) that the adjoint of a data assimilation procedure can be used to provide
the sensitivity of a forecast costfunction to the observations and background in an
atmospheric analysis. This extension of adjoint sensitivity methods into observation
space is a significant advance in efforts to understand factors that control atmospheric
predictability and to improve data assimilation procedures.

The first version of the NAVDAS (NRL Atmospheric Variational Data Assimila-
tion System) adjoint was developed by Roger Daley during 1999-2000 and is briefly
described in Daley and Barker (2001). This code was used for the Ph.D. research
of Nancy Baker (Baker 2000, Baker and Daley 2000) and for preliminary observa-
tion sensitivity tests by Rolf Langland. However, substantial revisions to the regular
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(forward) NAVDAS code between 2000 and 2002 made it necessary to develop a new
version of the adjoint, and a code development project was therefore initiated in 2002.
The current NAVDAS adjoint was primarily developed from a version of NAVDAS
obtained on June 18, 2002. It is a completely new adjoint code, although based on the
framework of the original Daley version. Since NAVDAS is a linear procedure, there
is no separate tangent linear version of NAVDAS, and the adjoint was developed line
by line directly from the regular NAVDAS Fortran code. The NAVDAS adjoint code
was further updated by the authors using NAVDAS code obtained in March 2003 and
January 2004 that included modifications to background error covariance, radiance
assimilation, and other changes. This report provides the first complete description
of the NAVDAS adjoint, including observation sensitivity equations and overview of
the Fortran code (Section 2), steps involved in running and verifying the adjoint code

(Section 3), and examples of observation sensitivity applications (Section 4).

2 NAVDAS Adjoint Development

2.1 Observation Sensitivity

The basic purpose of the NAVDAS adjoint is to provide the sensitivity of a user-

defined scalar costfunction! J with respect to the vector of observations y used by

1J can be any differentiable function of the forecast model variables, such as forecast error,

vorticity, surface pressure, temperature, wind speed, etc.




NAVDAS in its assimilation procedure. The costfunction J is a function of a model
forecast (x;) started from an analyzed initial condition (x,) and J may also be
referred to as a "forecast response function” or ”forecast aspect.” The ”observation
sensitivity” vector 8J / Oy is a gradient in ”observation space”, e.g., its elements

exist at the locations of observations, and it is defined by

8 _ e 0

oy ox,

(1)

where 8J / 8x, is an analysis (initial condition) sensitivity gradient provided by the
adjoint of a forecast model such as NOGAPS (Rosmond 1997, Hogan et al. 1999).
The adjoint operator KT = [HP,HT + R|"'HP, is the transpose of the Kalman
gain operator, defined by K = P,HT [HP,HT + R]! that represents the regular
(forward) NAVDAS procedure (Daley and Barker 2001). Note that [HP,HT + R]™
is self-adjoint. H is a linearized operator used to project from gridpoint to observation
space, and P, and R are the background and observation error covariance matrices,
respectively. The main components of the observation sensitivity calculation are

outlined in Fig. 1
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Figure 1: Components of the observation sensitivity calculation using
adjoint versions of NOGAPS and NAVDAS, where L' is the tangent

propagator of NOGAPS, x, is the forecast state vector and x, is the
analysis state vector. Other symbols are defined in Section 2.1.

The initial condition sensitivity is defined by

0J =LT ﬁ‘_]_
0x, ox;s’

(2)

where LT is the adjoint (transpose) of the tangent linear propagator L of the forecast
model. Since the Kalman gain operator in NAVDAS is linear, the calculation of

sensitivity using (1) is exact. However, calculation of the analysis sensitivity 8J / 0%,




by the NOGAPS adjoint (2) involves tangent linear approximations and this limits
the useful quantitative application of observation sensitivity to short-range forecasts
of approximately three days or less. In addition, the current versions of the NOGAPS
and NAVDAS adjoints do not include consideration of moist processes or moisture
observations, which can be an important limitation in some applications.

A perturbation of the initial conditions §x, can be propagated to the forecast
time by

dx5 = Lix, . (3)

The introduction of §x, changes the scalar costfunction by an amount §J, which

is a function of dx;

J+6J = f (x5 4+ 0xy) (4)
5T =f (5x;) = f (Lbx,) . (%)

Since 8J is a function of §x,, we can extend the definition of the sensitivity
gradient in terms of the observation and background used by the data assimilation

procedure. The basic linear form of the NAVDAS analysis can be written as
xa=xb+K (Y"'HXI;) ) (6)

where x, is a background forecast. In the regular form of NAVDAS (Daley and

Barker, 2001) the operator H may be nonlinear for some types of observations. If we




perturb the observations by dy, then
Xo + 0%, = X + K (y+dy — Hx,) . (7)

The adjoint of (7), which defines the sensitivity to observations, is (1). However,

if we instead perturb the background by dx,, then
Xo + 0%, = (% + 0%3) + K (y — Hx, — Héxp) . (8)

"The adjoint of (8), which defines the sensitivity to the background, has two terms

8J _8J _po.q 8J
e = o ~H KT o 9)

In (9), KT 8J / 8x, is the observation sensitivity. Therefore we may re-write (9)

0J _ 8J _pr 8J

%, 0%, 8y ’

(10)

which is an equation for the sensitivity of J to the background in gridpoint space. If
there are no observations, it is clear that 8J / 9x, = 8J / dx, because the analysis x,
is then simply the background x, carried forward with no change and 8J / 8y =0.
The operator HT, which is required to project 8J / By from observation space to
gridpoint space, is not available as a stand-alone component of the regular NAVDAS
code but it is currently being developed as part of the adjoint system.

Observation sensitivity can be used in a variety of ways to study the impact of

observations on forecast outcome. For example, a Taylor series expansion can be used
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to estimate the effect of an observation perturbation vector in terms of §J

2
0J = <5y, %> + <(5y)2 ,%g—y‘—i—>+ (11)

If the perturbations represented by dy do not exceed the magnitude of typical

innovations, the Taylor series can be truncated to just the 1%*-order term

7= (av, ) -

The scalar quantity éJ can represent the forecast impact caused by changes to
real observations, or even the addition of hypothetical observations. It will be shown
in Section 4.2 that observation sensitivity can also be used to quantify the impact of
innovations (observation - background) on short-range forecast error differences. In
fact, it is valid to interpret 8J / 8y as a sensitivity to the innovation vector, and dy
as a perturbation or component of the innovation vector. Following (10) the impact

of background perturbations can be evaluated using the expression

0J = <5xb , 6%]> — <H6xb , ?—9;> , (13)

where the first term on the RHS of (13) is evaluated in gridpoint-space and the

second RHS term is in observation space.
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Figure 2: Primary subroutines in forward version of
NAVDAS. Symbols are defined in Section 2.1.

2.2 Adjoint Code Description

The NAVDAS adjoint code is written in Fortran 90 and designed to run on multiple
processors using MPI (message-passing-interface). The primary difference between

the forward and adjoint codes for NAVDAS is the transposition of the post-multiplier.




Whereas in the forward NAVDAS (Fig. 2) the post-multiplier P,HT is applied after
the solver [HP,HT + R]™1, in the adjoint of NAVDAS (Fig. 3) the transpose of the
post-multiplier HP; is invoked first, and then the solver (which is the same in the
forward and adjoint codes) is applied. In addition, the NAVDAS adjoint uses special
routines for interpolation of the input analysis sensitivity vector 8J / 0x, and for
post—processing of the observation sensitivity output.

The computational time required to run the NAVDAS adjoint is less than that of
the regular NAVDAS analysis, because the adjoint does not require that the innova-
tion processing of the regular NAVDAS be repeated. The adjoint code is structured so
that major functions are controlled by a driver program and several primary subrou-
tines, which are described below. However, all details of the adjoint code development
are not included here, and the actual Fortran code should be examined (see Appendix

A) if additional information is required.
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Figure 3: Primary subroutines in adjoint version of NAVDAS. Symbols
are defined in Section 2.1. The caret (*) represents 87 /8( ).

2.2.1 adj_nav3d_nogaps The main program module of the adjoint code is sim-
ilar to the main program of the regular (forward) NAVDAS code (nav3d_nogaps),
except that a call is made to navdas__adj, rather than to navdas. Certain para-
meters and switches are set differently for running the adjoint code. For example,

the adjoint does not repeat any of the quality control checks that are performed in
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the regular NAVDAS run. The quality control flag that results from the innovation
and buddy check quality control is read from the rsd_vec file that has been pro-
duced in the regular NAVDAS run. The adjoint also reads a quality control flag
from the innovation file that results from quality control checks in the NAVDAS

pre-processor.

Switch Settings in NAVDAS Adjoint:

e innov_check =F
e buddy_check =F

e ghost = F (this is an option for ensuring that preconditioner prisms have suffi-

cient observations in the regular NAVDAS)
e isentropic = F (the adjoint does not currently allow this option)
e jmin = F (the jmin diagnostics are not computed in the adjoint)

e analysis_error_exe = F (the call to navdas__aerr for analysis error estimates

is not part of the adjoint code)

2.2.2 navdas adj This subroutine reads the various input files required to run
the NAVDAS adjoint, calls the major subroutines involved in the sensitivity calcula-

tions and writes the observation sensitivity to an output file. The first step is to read

11




the innovation file and rsd_ vec file produced by the regular NAVDAS assimila-
tion. These files contain information that specifies observation value, location, time,
background value, errors assigned to the observation and background, quality control
flags and other information valid at the assimilation time for which the sensitivity is
to be calculated. The observations considered by the adjoint can be real observations

provided in the innovation file, or they can be hypothetical observations defined by

the user.
Subroutine Array(s) Remarks
navdas_adj tempsen, usen, Analysis sensitivity (temperature,

vsen u-wind, v-wind) on the 1°, 60-level
“output” grid of NAVDAS.

adjoint_correction | adjoint_eigen_grid | Analysis sensitivity in vertically-
decomposed eigenvector space (60
levels).

adjoint_n3dvar eob_work Observation sensitivity in
eigenvector space after call to
adjoint_post_multiply

cob Observation sensitivity in physical
space before call to solver

navdas_adj ob_sens Observation sensitivity vector in
observation space after call to
adjoint_n3dvar.

Table 1: Arrays that contain analysis and observation
sensitivity in the NAVDAS adjoint code.

The analysis sensitivity vector 8J / 8x, provided by the NOGAPS adjoint is read
from a saved file and put into the arrays tempsen, usen and vsen, which contain

the sensitivities for temperature, u-wind, and v-wind, respectively. The NOGAPS

12




adjoint also produces a sensitivity to terrain pressure, but this component is not used
as input for the NAVDAS adjoint, because the forward NAVDAS does not produce a
pressure analysis increment as an output field. An array phisen appears in the code
but would be used only if the NOGAPS adjoint produced sensitivity to height instead
of temperature. Note that a special interpolation procedure (see Section 3.1) is used
to interpolate 8J / 0x, from the NOGAPS grid to the NAVDAS grid before running
the NAVDAS adjoint.

A call to adjoint _correction converts the sensitivity from the analysis gridpoint
space to eigenvector space, and the sensitivity is then contained in the array ad-
joint_ eigen_ grid (Table 1). The subroutine windrotate grid adjusts the analysis
sensitivity winds from grid orientation to spherical coordinates, and adjoint _n3dvar
is then called to perform the major part of the observation sensitivity calculations.
Finally, windrotate ob is called to convert the sensitivity winds (now in obser-
vation space) back to grid orientation from spherical coordinates. The observation

sensitivity is then written to an output file.

2.2.3 adjoint_correction This subroutine is called from navdas _adj and con-
verts the analysis sensitivity vector (contained in the arrays tempsen, usen, vsen)
from NAVDAS gridpoint space to eigenvector space (adjoint_eigen_grid) near the
beginning of the observation sensitivity calculations. The ”zero-order” vertical in-
terpolation option of NAVDAS is used here, because the 60 pressure levels used for

13




the arrays tempsen, usen, vsen have been specified to exactly match the 60 levels of
adjoint_ eigen_ grid. The pressure levels for temperature and wind are defined by the
arrays prestout and pressout, respectively. Also in this subroutine the temperature
and wind sensitivities are "normalized” by multiplying with the square root of the

background error variance (the array rmsvar).

2.2.4 adjoint_n3dvar This subroutine controls the two major components of
the observation sensitivity calculations, which are the adjoint (transpose) of the NAV-
DAS post-multiplication step and the iterative application of the solver. At the begin-
ning of this subroutine, the sensitivity is contained in the array adjoint_eigen_grid on
the NAVDAS one-degree grid and in vertical eigenvector space using 60 vertical levels.
The first major step is to apply the operator HP, (the transpose of the forward NAV-
DAS post-multiplier P,HT) to the analysis sensitivity as a ” pre-multiplier” by calling
the subroutine adjoint_post multiply. The call to adjoint _post_multiply is
actually made within a set of do-loops indexed over the number of analysis grid
volumes and observation prisms.

After calling adjoint _post _multiply the sensitivity is contained in the array
eob_work (Table 1). The subroutine left operator converts the sensitivity from
the eigenvector space of eob_work into the array cob, which is the sensitivity in
physical (observation) space. The first and second preconditioners are applied and
subroutine genince is then called to perform the iterative conjugate gradient solver

14




component of the NAVDAS adjoint, represer.lted by [HP,HT + R]|™!. The solver
subroutine (genince) is the same? in the forward and adjoint versions of NAVDAS,

but the argument list in the call to genince is altered, as follows:

e call genince (w, xiv_ob, cob, ...... )  in forward NAVDAS

e call genince (w, cob, ob_sens, ....)  in adjoint NAVDAS

In the forward NAVDAS, the solver input is the array ziv_ob and it returns the
array cob, which is in observation space prior to the application of right _operator.
In the adjoint NAVDAS, the solver input is the array cob and it returns the array
ob_ sens, which is the observation sensitivity in observation space. The final step in
adjoint _n3dvar is a ”de-normalization” of the sensitivity, accomplished by dividing
ob_sens by the array rmsvar. The array ob_sens is then returned to navdas__adj

for output.

2.2.5 adjoint post multiply Thissubroutineis called from adjoint_ n3dvar
and is used to apply the HP; operator to the sensitivity vector in the first step of
the NAVDAS adjoint calculations. It works in eigenvector space and represents the
transpose of the operator P,HT performed by subroutine post multiply in the

forward NAVDAS. In the forward NAVDAS, the input for post__multiply is the

2The convergence criteria used in the descent algorithm of the solver are identical in the regular

NAVDAS and adjoint NAVDAS.
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array eob_work (the array cob projected into vertical eigenvector space) and the
output is an array containing what is essentially the analysis correction vector in
eigenvector space. In the adjoint NAVDAS, the input for adjoint _post multiply
is the sensitivity array adjoint_eigen_grid and the output is the adjoint version of

the array eob work.

2.2.6 Arrays used in NAVDAS adjoint

e tempsen, usen, vsen - sensitivity to temperature and winds (components of

8J | 8x,) on the 1° (lat-lon) 60-level NAVDAS output grid

® adjoint_eigen_ grid - sensitivity to temperature and winds (9J / 0x,) on the

1° (lat-lon) grid decomposed in vertical eigenvector space (60 levels)

® 0b_sens - sensitivity to observations (8J / dy) in observation space, currently

includes temperature, wind, height, and brightness temperature observations

e oberr_sens - sensitivity to specified observation error in observation space, see

Section 4.5 for definition

o bkerr_sens - sensitivity to specified background error in gridpoint space, cur-

rently not implemented

e prestout, pressout - defines the 60 pressure levels used for input of temperature

and wind analysis sensitivity, respectively

16




e Tiv_ob - innovation values read from the innovation file produced by NAVDAS

e rsd_wval - residual (analysis - observation) values read from the rsd_ vec file

produced by NAVDAS

e num_reject - observation reject flag values read from the rsd_vec file pro-

duced by NAVDAS

e cob_fwd - ”cob” vector from the regular (forward) NAVDAS read from the

rsd_vec file

3 Running the NAVDAS Adjoint

The NAVDAS adjoint code exists as a single ﬁle.written in Fortran 90 called NAV-
DAS _adj.f that contains the main program and all required subroutines and defined
functions. The source code is compiled using a makefile that produces the executable
NAVDAS adj.exe. There is no attached code library. The adjoint calculation uses
an outer c-shell script called run_navdas__adjoint. The c-shell script controls in-
put and output of certain files used by the adjoint and invokes a k-shell script called
NAVDAS adj.ksh that invokes the NAVDAS adjoint executable file. The NAV-
DAS adjoint source code and scripts are available in a directory on the NRL computer
hadley (see Appendix A). The procedure for calculating observation sensitivity with

the NAVDAS adjoint includes the following steps:

17




Procedure for Calculating Observation Sensitivity:

1. Run the regular NAVDAS assimilation to produce analyzed initial conditions.
Save the innovation file and rsd__vec file

2. Run the full-physics nonlinear forecast model (NOGAPS) and save the forecast
trajectory

3. Define a forecast costfunction (J)

4. Run the NOGAPS adjoint to produce the analysis (initial condition) sensitivity
0J | 0x,

5. Interpolate 8J / 9%, from the NOGAPS gaussian grid to the NAVDAS output
grid (see Section 3.1, below)

6. Run the NAVDAS adjoint to produce the observation sensitivity 8J / 8y

7. Run graphics or post-processing to plot observation sensitivity, observation

impact or other products

3.1 Pre-Processing (Interpolation of 8J / 9z,)

The analysis sensitivity vector 8J / 0%, comprises the ”input” to the NAVDAS
adjoint and is provided on a 1° lat-lon grid with 60 vertical levels that correspond
exactly to the levels used in the vertical eigenvector decomposition at the end of the
regular NAVDAS analysis. This allows the zero-order interpolation option to be used

when the arrays that contain 8J / 8x, (tempsen, usen, vsen) are transferred into

18




adjoint_eigen_ grid by the subroutine adjoint _correction.

|

|

1200 mb —

k
Ap = 1mb

Figure 4: Interpolation of an adjoint sensitivity gradient between
grids with different vertical configurations. Used for transfer of
analysis sensitivity from NOGAPS sigma levels to NAVDAS output
pressure levels in the pre-processing step for NAVDAS adjoint. W is
an array that contains the analysis sensitivity values normalized to
represent pressure intervals of 1 mb.

Before running the NAVDAS adjoint, a special pre-processing interpolation pro-
cedure is required to transfer 8J / 0%, from the NOGAPS gaussian grid and sigma

surfaces onto the NAVDAS grid. Because the adjoint sensitivity fields are gradients,
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rather than conventional temperature or wind variables, this interpolation step must
carefully account for differences in horizontal and vertical resolution of the NOGAPS
and NAVDAS grids. It is critical that this step be performed correctly, so that the
global sum of the analysis sensitivity is identical on both grids. Other procedures,
such as bi-linear interpolation, should not be used to interpolate adjoint sensitivity
between grids with different horizontal or vertical resolutions, as they are likely to in-
troduce serious distortion of the sensitivity gradients. A version of the pre-processing
sensitivity interpolation procedure for NAVDAS is provided as a Fortran 90 file called
gradtp.f (see Appendix A).

The first step in the interpolation of the analysis sensitivity (temperature and
winds) is a transfer of 8J / x, from NOGAPS sigma-levels to the 60 constant-
pressure levels used by NAVDAS, at every point on the NOGAPS gaussian grid. The
procedure is illustrated in Fig. 4.

1. The sensitivity (0J / 8x,) values on each NOGAPS sigma level are normalized
by the thickness of the pressure layer (in mb) that each level represents. Thus, for
some level, 7 with a pressure thickness (Ap),,, we let S, = (87 / 0xa), / (Ap),,.

2. The values of of S’n, for all n levels of NOGAPS, are used to define the
elements of an array, W, that contains the normalized sensitivity values at 1 mb

vertical intervals from 1 mb to 1200 mb. Thus, if sigma level n represents pressure

from 500 - 600 mb at a NOGAPS gridpoint, the value S, is assigned to each of the

20




surface terrain pressure are assigned a value of zero.

W 22N

n [ |
: o) o) (o) O 29.0N
0.0056
. 0.0166 Latitude

O 280N

- < 03166 W 277N

0.1834 0.0610
0.1834
®) O ]
\).lmf \
0.1500 0.0500
n
O O

39.0E 40.0E 40.5E  41.0E 42.0E

O 270N

B 262N
O 260N

on

Longitude
B NOGAPS T79 grid O NAVDAS 1°grid

Figure 5: Example of interpolations performed on constant pressure surfaces between the
NAVDAS 1° grid and the NOGAPS T79 grid (shown with a resolution of exactly 1.5° here to
simplify the diagram). The weighting factors on arrows directed towards NOGAPS points represent
interpolation of conventional fields and add to 1.0. The weighting factors on arrows directed
towards NAVDAS points represent interpolation of sensitivity gradient fields and add to 0.4444,
which is the ratio of the areas represented by grid points on the 1° grid and the 1.5° grid, 0.4444 =
((1.0*1.0) + (1.5*%1.5)). NAVDAS 1° gridpoints represent smaller areas than NOGAPS T79
3 gridpoints, and the sensitivity magnitude is reduced through this interpolation to account for the
| difference. Interpolation weighting factors are determined by procedures illustrated in Figs. 6 and 7.
In practice, all grid points are used in the interpolations.

k elements of W from k=500 to 600 mb. Any elements of W below the NOGAPS
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3. The normalized sensitivity is then transferred from the array W onto the
60-level NAVDAS grid, in the reverse sense of Steps 1 and 2. Each of the 60 levels
on the NAVDAS grid represents a layer pressure thickness. Thus, if pressure level m
represents pressure from 520 - 560 mb on the NAVDAS grid, the value (0J / 8x,)_
is the sum of the k elements of W from k=520 to 560. Note that the pressure levels
for temperature are not the same as for wind.

4. After completion of this step, the values of 8J / 8x, in any vertical column
can be summed over all sigma levels on the NOGAPS grid and over all pressure levels
on the NAVDAS grid and the two sums should be identical.

The second interpolation step is a transfer of J / 9x, from the gaussian grid
of NOGAPS to the 1° lat-lon NAVDAS grid, on each of the 60 levels defined in the
previous step. This horizontal interpolation is designed to conserve the global sum of
the sensitivity gradient when it is transferred between grids with different resolutions.
The ”forward” interpolation is a transfer of conventional fields (temperature, wind)
from the NAVDAS grid to the NOGAPS grid. As shown in Fig. 5, the weighting
factors on arrows directed from NAVDAS to NOGAPS points (in the forward inter-
polation sense) add to 1.0, which conserves the values of the conventional variables.
In contrast, the weighting factors on arrows directed from NOGAPS to NAVDAS
points (in the adjoint interpolation sense) add to 0.4444, which is the ratio of the

areas represented by grid points on the NAVDAS 1° grid vs. the NOGAPS T79 grid
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(71.5°). Thus, the sensitivity magnitude at individual grid points on the 1° grid is
less than on the T79 grid, because each 1° gridpoint represents a smaller area, but
the global sum of the sensitivity over all points on each grid is identical. Different
weighting factors would be used when the resolution of either the NOGAPS gaussian

grid or the NAVDAS grid is changed.

Latitude

0 292N
O 29.0N

28.5N

The distance from 27.5N to 28.45N is
assigned to the NAVDAS grid point at
28.0N. Its weighting factor is: (28.45- ——— O 28.0N
27.5) + 1.50 = 0.6333.

x i 28.45N

\ 4 — N
27.5N —%&
The distance from 26.95N to 27.5N is
assigned to the NAVDAS grid point at O 270N

27.0N. Its weighting factor is: (27.5- Y A4 26.95N
26.95) + 1.50 = 0.3667.

26.5N O 262N
O 26.0N
W NOGAPS T79 grid O NAVDAS 1° grid

Figure 6: Example of interpolation weighting factors based on north-south
distance. In this example, the interpolation is from NAVDAS grid points to the
NOGAPS grid point at 27.7N, which represents a distance of 1.5° from 26.95N to
28.45N. The total weighting factor depends also on the east-west grid
configuration (Fig. 7).
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Weighting factors for horizontal interpolation (like those shown in Fig. 5) are
determined by a linear algorithm based on distances in the north-south and east-
west directions. Consider the ”forward” interpolation from the NAVDAS grid to
the NOGAPS grid. Each T79 grid point represents a north-south distance of 1.5°
(approximately 1.5° on the actual T79 grid), centered on the gridpoint latitude. If
the latitude of the T79 gridpoint is, say, 27.7N, it represents the interval from 26.95N
to 28.45N, as shown in Fig. 6. This interval on the T79 grid is overlapped by intervals
represented by several (either two or three) points on the NAVDAS 1° grid. In the
example of Fig. 6 the interpolation to the T79 grid point at 27.7N is a weighted
average of values taken from points on the NAVDAS 1° grid at 27N and 28N. The
total weighting factor for horizontal interpolation is a product of the north-south
weighting factor and another factor that depends on the east-west grid configuration,
as shown in Fig. 7. If the longitude of the T79 gridpoint is an integer (e.g., it lies
directly on the 1° grid at gridpoint ”i”) the assigned weighting is 1 /6 to the column
indexed (i-1), 2/3 to the column indexed (i) and 1/6 to the column indexed (i+1).
In the alternate case where the T79 gridpoint is halfway between points on the 1°

grid, the two columns to the east and west are each assigned half the weight.
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Figure 7: Interpolation weighting based on longitudinal position of NAVDAS and
NOGAPS gridpoints. The total horizontal interpolation weighting factor as shown
for selected gridpoints in Fig. 5 combines a weighting factor for the east-west
direction (illustrated here) and a weighting factor for the north-south direction as
illustrated in Fig. 6.

3.2 Output File

The output of the NAVDAS adjoint is written to a formatted file. Each line of the out-
put file corresponds to a separate observation (excluding any rejected observations),

and includes the following information:
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e n - sequence number of observation

e rlat_ob - latitude of observation

e rlon_ob - longitude of observation

e ob_sens - observation sensitivity, 8J / Oy
e adjoint cob- (Z=HP, 8J / 9x,)

e jvarty ob - observation type (1=height, 2=temperature, 3=u-wind, 4=v-wind,

13=brightness temperature)
e insty ob - instrument type
e num_reject - reject flag (0=assimilated, 1=rejected)
e err_ob - assigned observation error standard deviation
e rmsvar - assigned background error standard deviation
® p_ob - pressure level of observation
e c_pf_ob - observation label (pt. 1)
e c_db_ob - observation label (pt. 2)
® xiv_ob - innovation (observation - background)

e ob - observation value
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e oberr sens - sensitivity to observation error standard deviation

e rsd_val - residual (analysis - observation)

3.3 Gradient (accuracy) Test

A basic procedure for validating that an adjoint model has been correctly coded is the
so-called gradient test, which compares the value of scalar inner products, using input
and output sensitivity vectors. With the NAVDAS adjoint, a form of the gradient

test can be defined as

0J} oJ;  9J,
f f g
—_— — — 4
K(y Hx) , By > \<(xa Xp) %, + 3xb> 1 (14)
observation — space gridpoint — space
6Jobs 6Jg’r’id

where the LHS of (14) is calculated in observation space using temperature, wind, and
height innovations and sensitivity, and the RHS is calculated in the gridpoint space of
the forecast model using temperature, wind, and terrain pressure analysis increments
and sensitivity. For consistency with results shown later, it is convenient to define
the costfunction here so that d.J represents the difference between the forecast errors
of trajectories starting from x, and x;. Thus, ey is the error in a forecast of length f
starting from x,,and e, is the error in a forecast of length g starting from x;. The 6-hr

forecast of trajectory g provides the background for the assimilation that produces
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Xa, and the two forecasts verify at the same time. The scalar quantities 8.J,, and
dJgriq are adjoint-based estimates of the actual error difference e ¢ — eg. Appendix B
provides a derivation of the expressions used in (14). Note that the forecast length
does not affect the accuracy of this gradient test, since the test only depends on the
accuracy of the NAVDAS adjoint calculation (e.g., Eq. 1) and not on the accuracy
of the forecast model (NOGAPS) adjoint. However, forecast length does affect the
accuracy of §Jops and 0Jy.iq with respect to the actual value of e 7 — g that is obtained

from the nonlinear forecast model (see Section 4.2).

Jkg -

-85 #0EC 11Bee Tolke e 28hec
g Initia! Condition Date (OOUTC)

Figure 8: Gradient test comparison for 8Jus (solid line) and &Jgria (dash line) for
Dec 2002. Costfunction J is NOGAPS forecast error (ey5€3 , J kg') in the
global domain. 8Jes and 8Jgra are defined in Section 3.3.
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A comparison of §Jys With §Jgig using f = 24h and g = 30h for the month of
December 2002 is shown in Fig. 8. The forecast errors are calculated in the global
domain from NOGAPS forecasts started at 00UTC. For December 2002, the average
value of §Jops/0Jgria is 0.951 (maximum = 1.002, minimum = 0.883). These results
indicate that the NAVDAS adjoint calculates the observation sensitivity from the
analysis sensitivity input to within about 95% accuracy. Note that §J is negative,
since ey < ezg.

In theory the equivalence of §Jps and dJrg should be exact if the adjoint code
that produces the sensitivity 0J / dy is completely consistent with respect to the
version of NAVDAS that produces the analysis increment (x,—x;) from the innovation
(y —Hx). In practice, there are several obstacles that prevent an exact result. First,
the interpolation of 8J / 8%, from NOGAPS to NAVDAS gridpoint space unavoidably
introduces some small (but finite) inaccuracy into the observation sensitivity results.

An additional consideration is that the NOGAPS adjoint producés a sensitivity
to the analyzed terrain pressure as a component of 8J / 0x,, but this pressure
sensitivity does not directly translate into a component of the sensitivity input to
NAVDAS, because NAVDAS does not produce a pressure analysis increment. Since
the terrain pressure contribution to the input analysis sensitivity from NOGAPS is
neglected in Fig. 8, there is a small systematic underestimate of the observation

sensitivity magnitude in the NAVDAS adjoint calculation.
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3.4 Code Maintenance and Updating

The current version of the NAVDAS adjoint is consistent with the forward version
of NAVDAS as of January 2004. It is anticipated that the adjoint code will be
updated at periodic intervals in order to maintain applicability to the operational
data assimilation system. For example, new observation quantities such as ozone will
be added to the adjoint code. However, the NAVDAS adjoint should be considered
a research code and it is not part of the formal NAVDAS configuration management

system. Refer to Appendix A for the locations of current codes and scripts.

4 Observation Sensitivity Examples

The current version of the NAVDAS adjoint provides two sensitivity gradients, i) the
sensitivity to observations dJ / Oy and ii) the sensitivity to the assigned observation
error (see Section 4.5). The observation sensitivity 8J / dy can be used for a variety
of applications, which involve various choices of observation (or innovation) pertur-
bation §y and costfunction J. Four possible applications are summarized in Table 2.
Application #1 is the use of observation sensitivity to interpret arbitrary perturba-
tions of the observations or background. In application #2, we quantify the impact
of actual innovations on a known forecast error difference. Application #3 describes
the general interpretation of sensitivity for hypothetical observations. Application

#4 pertains to targeted observing, when the both innovations and forecast errors are
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not known.

observing network at a future time?

Application dy J (scalar)

1. Basic Observation Sensitivity: Any perturbation Any valid
What are the impacts of various of appropriate costfunction
observation perturbations ? size

2. Innovation Impact: y - Hxp, (all Forecast error
What are the impacts of actual innovations known) (known)

on a known forecast error ?

3. Hypothetical Observations: y - Hxy, (some Forecast error or
What are the impacts of hypothetical known. some other costfunction
observations on a known forecast error ? unknc,)wn)

4. Targeted Observing: y - Hxp, (all Costfunction
What is the impact of adding a set of unknown) usually a forecast
targeted observations to the regular error surrogate

Table 2: Examples of observation sensitivity applications.
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4.1 Basic Observation Sensitivity

In the most general application, observation sensitivity can be used to estimate the
effect of various arbitrary changes in the values of observations (or innovations). For
example, we can define J as the difference between the 24h and 30h global forecast
error and examine the sensitivity of this costfunction with respect to any component
of the observation vector, as illustrated in Fig. 9 for rawinsonde temperature obser-
vations assimilated at 00UTC 10 December 2002. The sensitivity vector 8J / dy is
plotted in observation 'space at the locations where observations have been assimi-
lated by NAVDAS. We can also define an observation perturbation vector §y, which
can represent a change to the value of any one, or all, observations assimilated by
NAVDAS. Using (12), the perturbation &y implies that the forecast costfunction will
be changed by an amount §J. Thus, if we consider one temperature observation for
which (suppose) 0J / 8y = 0.004 J kg~'deg™!, and we let §y = 2.0 deg, then 6J
= 0.008 J kg~'. The magnitude of §y is normally restricted to perturbations no
larger than typical innovations because of tangent linear approximations in the fore-
cast model adjoint, and the sensitivity information is most accurate for short-range
forecasts of 72h or less.

In addition to estimation of observation perturbation impact, the observation
sensitivity 8J / Oy and the analysis sensitivity 8J / 0x, can be used to determine

the value of §J implied by a background perturbation dx;, using (13), as described
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in Section 2.2.

Figure 9: Sensitivity of J = e,,-e,, to 500 mb rawinsonde temperature observations at
00UTC 10 Dec 2002. Units are 103 J kg-ideg.

4.2 Observation Impact On Forecast Error

Observation sensitivity can be used in a diagnostic mode to evaluate the impact
of actual observations (or innovations) on the difference between two short-range
forecast errors. As in Section 3.3, we define e; as the error in a forecast of length
f starting from x,, and e, is the error in a forecast of length g starting from x;.

The 6-hr forecast of trajectory g provides the background for the assimilation that
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produces X,, and the two forecasts verify at the same time. In general, x, will be
a better estimate of the true atmospheric state than x;, and thus typically (but not
always) ez4 < e3y. The error difference ey — ey is due entirely to the assimilation of
observations used to produce the analysis x,. The true difference between the forecast
errors e and e, is
Ae? =er—eg. (15)
Note that in a limiting case in which no observations are assimilated, x, = x, and
Ae? =0. As shown in Langland and Baker (2004) and in Appendix B, observation

sensitivity can be used to provide an estimate of Ae¥, using what can be called an

"observation impact” equation

5et = <(y—Hx,,) , %‘;—?> . (16)

For the global domain, the inner product represented by (16) is evaluated using the
entire innovation and observation sensitivity vectors (excluding moisture at present).
Note that for this choice of costfunction e} in (16) is the same quantity as 6Jyps
in (14). It can also be noted that studies by Doerenbecher and Bergot (2001) and
Fourrie et al. (2002) use observation impact functions in observation space that
are similar in form to Eq. (16) - e.g., they involve the innovation vector and an
observation sensitivity gradient However, in those studies the observation sensitivity
is not derived with an actual adjoint of the assimilation procedure. Fourrie et al.
(2002) use the error difference e; — e, as a costfunction, but their impact function is
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based on sensitivity gradients that involve only the trajectory starting from x,. In
Doerenbecher and Bergot (2001), the costfunction is a dynamic variable (enstrophy),

rather than a forecast error.

362 using
—24 observation.sensitivily

Jkg -t \
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P T ,.624-630in.nonlinear o
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Figure 10: Time series of e,,-e;; (dark solid line) in NOGAPS
forecasts and corresponding adjoint-based observation impact
estimate 86j (grey solid line) calculated using Eq. 16 in the global
domain with no moisture observations in December 2002.

A time series comparing Aefc and 56‘;’1 for December 2002, using f = 24h and
g = 30h is provided in Fig. 10. The values of ded) and Ae}} are negative, since
ezs < e3. For December 2002, the average value of §e3 / Ae is 0.740 (maximum
= 0.827, minimum = 0.672). The observation impact calculations using (16) are

thus an underestimate of the actual forecast error difference. The majority of the
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underestimate is probably explained by the neglect of moisture observations® in the
current NAVDAS adjoint. However, the accuracy of the observation impact estimate
is also affected by approximations in the forecast model adjoint, primarily the neglect
of moist physical processes and nonlinearities in the dry dynamics. The effect of these

tangent linear approximations becomes more significant as forecast length increases.

Ob count

SHEM
E NHEM

SHIP  AUSN

LAND

680 RAOB

-100

Figure 11: Summed global observation impact ( 8€}, , J kg!) for
Southern and Northern Hemisphere, partitioned by instrument
type, combining June and December 2002. Includes afl
cbservations assimilated in NAVDAS at 00UTC. ATOVS-
temperature refrievals, RAOB-rawinsondes, SATW-cloud and
feature-track winds, AIRW-commercial aircraft observations,
LAND-land surface observations, SHIP-ship surface observations,
AUSN-synthetic sea-level pressure data

$Moisture data account for about 30 percent of total global observations at 00UTC.
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Fig. 11 illustrates how observation impact estimates can be used to compare the
value provided by the various types of observations assimilated by NAVDAS. Here,
observation impact is evaluated in terms of §e3] for the northern and southern hemi-
spheres, combining the months of June and December 2002 and using observations
assimilated at 00UTC. ATOVS are satellite temperature retrievals (Reale et al. 2003).
SATW are feature-track wind vectors from visible, microwave and water vapor geo-
stationary imagery (Rao et al. 2002). RAOB are rawinsonde temperature, winds, and
surface heights. AIRW are commercial aircraft temperature and wind data in level
flight and ascent and descent profiles. LAND are surface temperatures, winds, and
heights from land surface reporting stations. SHIP are surface temperatures, winds,
and heights from ships at-sea. AUSN are synthetic sea-level pressure data assimilated
as height observations over part of the southern hemisphere (Guymer 1978).

As shown in Fig. 11, the largest forecast error reductions (de39) for the south-
ern hemisphere from observations assimilated at 00UTC are produced by ATOVS,
satellite wind data, and rawinsondes. In the northern hemisphere the largest error
reductions are produced by rawinsonde, satellite wind data, commercial aircraft data
and ATOVS. Almost all the error reduction due to commercial aircraft observations
is attributable to data in the northern hemisphere. Land and ship surface data pro-
duce lesser (but still significant) forecast error reductions. AUSN data are a valuable

observation type for the southern hemisphere. In fact, the error reduction per obser-
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vation for AUSN can be much larger than for other types of observations (Langland

and Baker 2004).

a Rawinsonde Profiles b ATOVS Profiles

2 =-1.06 J kg'!

d Satellite Winds

Figure 12: Observation impact (J kg-') in the NAVDAS assimilation
at 00UTC 10 December 2002. Green (red) dots represent large
reduction (increase) in 24h global forecast error. Blue (orange) dots
represent moderate reduction (increase) in 24h global forecast error.
Grey dots represent relatively small reduction or increase in 24h global
forecast error. For rawinsondes and ATOVS each dot represents the
combined impact of observations in vertical profiles. For aircraft and
satellite wind observations each dot combines the impact of
observations with the same latitude, longitude and pressure level. T =
global sum of observation impact for instrument type.
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While Fig. 11 indicates that the global (or hemispheric) sums of de3] are negative
(confirming that assimilation of large numbers of observations reduces egs — e30) these
sums combine large numbers of positive, as well as negative, observation impacts
associated with individual observations. This can be seen by examining the pattern of
observation impact at a particular assimilation time. For example, at the assimilation
time of 00UTC 10 Dec 2002 (Fig. 12), each of the four observation types include
many individual data for which 6e3) > 0 (shown as orange and red dots). This mix
of positive and negative observation impact at a single assimilation time does not
indicate a systematic problem with certain observations, rather it is an outcome of
the statistical assumptions and approximations used in data assimilation. However,
if the impact of a particular observation type or reporting station is consistently >

0, it could indicate an instrument or quality control problem.
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Top 20 Raobs - 24h Fest Error

December 2002

Figure 13: Twenty rawinsonde observing stations that produce the -
largest observation impact 863 | representing reductions of €,4-€5, in
the global domain, due to observations assimilated at 00UTC in
December 2002.

Another example of observation impact (Fig. 13) shows the locations of 20 rawin-
sonde stations that produced the largest negative values (e.g., error reduction) of e3?
for 0OUTC assimilations and forecasts during the month of December 2002. These
”key” rawinsondes tend to be found along land / ocean boundaries, in regions where
forecast error growth rates are relatively large, and where other in-situ or satellite

observations are relatively sparse.
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4.3 Hypothetical Observations

The NAVDAS adjoint can be used to determine the sensitivity of a known forecast
error or forecast parameter to hypothetical, as well as ”real” observations. The fol-

lowing information must be provided for each of the hypothetical observations:

e Latitude and Longitude

e Pressure Level

e Instrument Type (e.g., rawinéonde, satellite wind, etc.)
e Observation type (e.g., temperature, wind, height)

o Specified observation error

In this application the costfunction (J) can be forecast error or some other fore-
cast parameter of interest, such as surface pressure, or wind speed. The NAVDAS
adjoint will produce sensitivity to both the real and hypothetical observations. Note
that the observation sensitivity can be determined without the specification of an
innovation value. The impact of the real observations on an actual short-range fore-
cast error difference can be calculated using (16). The impact of the hypothetical
observations can also be estimated using (16), if a proxy innovation value is specified.
Sensitivity to hypothetical observations can be used, for example, to develop more

optimal configurations of satellite and in-situ observing systems.
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Figure 14: Configuration for targeted observing used in Fig. 15.
The interval from +0h to +66h is used to produce the targeting
guidance and deploy observational resources to the target area.

4.4 Targeted Observing

Observation sensitivity can be used for "targeted observing,” in which objective
(model-based) information provides guidance for the deployment of special obser-
vations intended to improve a short-range numerical weather forecast over a specific
region. This is a variant of sensitivity to hypothetical observations, in which a
costfunction other than actual forecast error must be used, and the observation sen-
sitivity is calculated for a future time (typically 24-72h ahead) when the targeted
observations are to be assimilated. An example of a possible time configuration for

targeted observing is shown in Fig. 14. Usually, the ” targeted observations” will be
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a relatively small set of special data added to the observations provided by regular
satellite and in-situ observing systems. The goal of targeted observing is to mazimize
the value of tﬂe complete observing network, e.g, the regular observations plus the
special targeted observations. However, adding targeted observations will, in general,
change the impact of nearby regular observations. The targeted observing procedure
generally includes the following steps:

Procedure for Targeted Observing:

1. Identify the forecast feature that is to be improved, through examination of
deterministic or ensemble forecasts

2. Define a forecast verification region, verification time and costfunction (J)

3. Define the type of targeted observation(s) and time at which they are to be
obtained

4. Define several (or many) possible configurations for the targeted observations

5. Calculate observation sensitivity 8J / dy for each configuration (each requires
a separate run of NAVDAS adjoint)

6. Prioritize targeting configuration based on impact function (e.g., Eq. 18, Eq.
19, or other expression)

7. Obtain targeted observations using in-situ or satellite instruments

8. Assimilate targeted observations and produce forecast
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In step 5, the locations of the hypothetical targeted observations can be spec-
ified using an input file read by the NAVDAS adjoint. The locations of regular
rawinsonde, land-surface, and ATOVS observations at the future targeting time can
be estimated with fairly good accuracy. The locations of commercial aircraft and
feature-track satellite wind data can be approximated using information from the
most-recent analysis performed at the same hour (e.g., 00UTC, 18UTC, etc.) as the
time at which the targeted observations are to be taken. The costfunction J for tar-
geted observing can be a forecast parameter, such as vorticity, wind, temperature, or
surface pressure, or it can be a difference between two forecasts, but the costfunction
in targeted observing cannot be forecast error, since that is not known in advance.
Another constraint is that the actual innovation values are not known for any of the

observations, either real or hypothetical, that will be obtained at the targeting time.
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Figure 15: Estimated impact of two dropsonde configurations on the
'42h NOGAPS forecast for northern Europe (area within red dash line).
Targeted observing time is 18UTC 15 Nov 2003, forecast verification
time is 12UTC 17 Nov 2003.

Fig. 15 illustrates the results of an observation sensitivity calculation for two
possible targeting observing configurations involving dropsondes deployed by a re-
connaissance aircraft. In this case, the targeted observing time is 18UTC 15 Dec
2003 and the forecast verification time is 12UTC 17 Dec 2003 (442h). The forecast

verification region is an area of the North Atlantic and northern Europe (indicated
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by the dashed red box). The NOGAPS forecast trajectory used for the targeting
calculations starts from an analysis at 00UTC 13 Dec 2003. Thus, in this example,
there is a 66h ”lead time” in which to produce the targeting guidance and deploy
an aircraft to the target region. The costfunction (a proxy for the actual forecast
error or forecast uncertainty) used here is the energy-weighted difference between two
forecasts that verify at 12UTC 17 Dec 2003 - a 108h forecast from 00UTC 13 Dec

2003 and a 114h forecast from 18UTC 12 Dec 2003.

1

Jtarg = 5( (X108 — X114) , C (X108 — X114)) , (17)

where C is a matrix of energy weighting coefficients for dry total energy (Rosmond
1997), and the NOGAPS forecast state vector x includes temperature, vorticity, diver-
gence, and surface pressure. Note that for targeted observing, it is not known whether
the desired outcome (a reduction in forecast error) corresponds to an increase or de-
crease in the value of the costfunction. An improved forecast might correspond to
either an increase or decrease in forecast energy, or surface pressure over the verifica-
tion region, for example. Thus, the impact function for targeted observing can only
measure the expected impact of the observations in terms of a change in the variance
or magnitude of J, under the assumption that if the observations have an impact

on J there is also a potential for reduction in forecast error. One expression for the
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expected impact of a configuration (n) of targeted observations is

targeted_obs
0J oJ
=V + —Hxy| , |=—|). 18
8}’ |> <a351|1?1,1ed innovglion ’ ay }> ( )
e e

Eq. (18) is a generalization of the observation impact equation (16) for the sit-

regular_obs

assumed innovation

uation when the innovations and actual forecast errors are not known. Since the
innovations are not known when the targeting guidance is prepared, it is necessary
to use ”assumed innovations” in (18). The assumed innovation can be, for example,
an estimate of analysis uncertainty or background error, or even a constant, in which
case [0J], is directly proportional to the sensitivity gradient magnitude. In (18)
both the ”innovation” and the observation sensitivity appear as absolute values, so
that each observation contributes to a positive value of |§J], . The total value of
[0 |(n) is the inner product calculated over the global domain, including all regular
and targeted observations.

In Fig 15a, Flight #1 is a set of 20 hypothetical dropsondes deployed from an
altitude of 24,000 ft. The location of each dropsonde is indicated by a solid dot,
and each dropsonde provides a vertical profile of temperature and wind on pressure
surfaces at intervals of 100 mb, with the assumed accuracy of rawinsonde observations.
Flight #2, shown in Fig. 15b, is a set of 12 hypothetical dropsondes with the same
specifications as Flight #1. The other solid dots in Fig. 15 are locations of regular

rawinsonde stations providing observations at the 18UTC time.
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Observation Control Flight #1 Flight #2
Type

Raobs 0.1520 0.1475 0.1483
Dropsondes - 0.0461 0.0578
Satwinds 0.1560 0.1530 0.1536
Aircraft 0.3839 0.3794 0.3832
ATOVS 0.5003 0.4911 0.4894
Land Surface 0.0144 0.0143 0.0143
Ship Surface 0.0695 0.0690 0.0668
Total 1.2761 1.3004 1.3134

Table 3: Impact function [8J] (J kg™") for targeted observing flight tracks
shown in Fig. 15. Costfunction (J) is the energy-weighted difference between
108h and 114h forecasts verifying over Northern Europe at 12UTC 17 Dec.

2003.

Table 3 summarizes the targeting impact calculations using ( 18) with an assumed

similated, then |6J| = 0.

By adding various configurations of targeted observations, we can increase the
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innovation of 1.0 and observation sensitivity calculated with the NAVDAS adjoint.
With no dropsondes added, the value of |§J| for this case is equal to 1.2761 J kg1
This number indicates the "potential” of the regular observing system to influence

the forecast uncertainty represented by the costfunction. If no observations are as-

potential impact of the total observing system. The 20 dropsondes in Flight #1
increase |6.J| to 1.3004 J kg~! (Table 3). Note that adding the dropsondes decreases

marginally the impact of other observation types, but increases the potential impact of




the total (regular + targeted) observing network, which is the desired result. Flight
#2 includes only 12 dropsondes, but increases |§J]| to 1.3134 J kg=! and is thus
considered to be the better of the two possible dropsonde configurations. In fact,
Flight #2 covers an area of stronger analysis sensitivity (not shown). This targeting
example suggests a relatively modest forecast impact, changing |§J| by approximately
2-3%. However, during the Winter Storm Reconnaissance Program (WSR) targeted
dropsonde observations reduced short-range forecast errors by an average 10%-20%
(Szunyogh et al. 2000) and by up to 50% over localized regions during the North
Pacific Experiment (NORPEX, Langland et al. 1999).

An alternative equation to estimate the impact of targeted observations can be
obtained (following Baker 2000) if we define J as the projection of the analysis error

€a onto the analysis sensitivity gradient

67 =T g j . (19)
The expected variance of the change in the forecast aspect J is
w1 =(2) @i, (20)
ox, Ox,
where (g, €1 ) is the analysis error covariance matrix, given by
P, =P, - P,HT (HP,H" + R) ' HP,. (21)

The second term in (21) represents the reduction of the background error covari-
ance due to the presence of the observations. Egs (20) and (21) can be combined
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(Baker 2000), finally resulting in

AN T, a0
((67)?) = <5y-) HPHT R 2 (22)

In (22) ((6J )2> is the expected reduction in the variance of §J due to the targeted
and regular observations. This expression can be evaluated using the observation

sensitivity and ”cob” vectors, both of which are provided by the NAVDAS adjoint.

4.5 Sensitivity to Observation Error

The quality of a data assimilation procedure depends partly on the specification
of observation and background error. These error parameters are generally tuned or
adjusted based on information from various sources, which may include values used in
other data assimilation procedures or the results of forward ”sensitivity” experiments
in which specified errors are modified in more-or-less arbitrary ways. The trial and
error sensitivity approach is generally an inefficient tuning procedure and is unlikely
to produce the optimal specification of either observation or background error. For
example, the results of conventional sensitivity tests are often ambiguous because the
"tuning” generally produces a combination of positive and negative impacts that are
partially self-canceling and conceal the actual potential for larger impact.

A potentially more efficient method of parameter tuning can use adjoint sensitivity
information which, for a selected forecast costfunction, provides a complete sensitivity
gradient vector for the entire observation space of the data assimilation procedure.
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With this informe;tion, the specified observation errors (or other parameters) can be
adjusted to achieve more optimal results with less trial and error.

The values of the observation error standard deviation &, in NAVDAS are specified
by data statements in the innovation code module and written to the innovation
file. In the NAVDAS adjoint code the innovation file is read and elements of the
diagonal observation error covariance matrix R are defined as r; = (¢, / €p)°, where
gy, is the background error standard deviation at observation locations, and &y, is used
here as a normalization factor. We wish to obtain the sensitivity gradient 8J / Or;,
which will be a vector in observation space. One method to obtain 8J / Or; would
be to write an adjoint (transpose) version of the discretized code that defines the
NAVDAS operator [HP,HT + R]™! in which &, and r; appear. This has not been
done because the operator is self-adjoint and additional adjoint code development
was not necessary to obtain sensitivity to observations.

Alternatively, it is possible to define 8J / Or; (the array oberr_sens) using vari-
ables already provided by the forward and adjoint versions of NAVDAS as

6J _ -—?—{*z , (23)

ory Oy
where z is the ”cob” array defined by the solver in the forward NAVDAS (z =[HP,HT +
R]™ (y — Hxs)). The NAVDAS adjoint reads z from the rsd _vec file and then com-
putes 8J / Or; after the calculation of J / Oy has been completed. The symbol (*)

in (20) denotes a vector Shur product, not a vector inner or outer product. Note that
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8J / Or; has the units of J, since r; is non-dimensional. The array z obtained from
the rsd _ vec file has the units of y. The derivation of (20) appears in Appendix C.

This application of this sensitivity is currently under development.

5 Summary

A new adjoint code has been developed for the NRL Atmospheric Variational Data
Assimilation System (NAVDAS), which performs a three-dimensional variational at-
mospheric analysis in observation space. The NAVDAS adjoint can be used to effi-
ciently calculate the gradient of a forecast costfunction with respect to the complete
vector of observations used for assimilation. In addition, sensitivity to the background
and the specified observation error can be calculated. For the dry observed variables
(temperature, wind, height), the observation sensitivity is shown to be accurate to
within about 5% of the theoretical best-possible result. The error in this calculation
is likely due to an inconsistency between the sensitivity to the NOGAPS initial sur-
face pressure field and the NAVDAS analysis, which provides temperature and wind,
but not an analyzed surface or sea-level pressure. At present, the NAVDAS adjoint
does not include sensitivity to moisture observations, but it is configured for radiance
assimilation (e.g., sensitivity to brightness temperature).

This report describes the main features of the NAVDAS adjoint, including key sub-

routines and the sequence of steps required to calculate observation sensitivity. The
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main difference between the forward and adjoint versions of NAVDAS is the trans-
position of the post-multiplier P,HT from the forward NAVDAS into the operator
HP,;, which is used at the beginning of the NAVDAS adjoint sensitivity calculations.

The input for the NAVDAS adjoint is an analysis sensitivity vector, provided by
the adjoint of a forecast model such as NOGAPS. A special interpolation procedure is
required to transfer the analysis sensitivity from the NOGAPS grid onto the NAVDAS
analysis grid. The NAVDAS adjoint uses the innovation file and the rsd_vec file
produced by the regular (forward) NAVDAS procedure.

In Section 4, four examples of observation sensitivity applications are described:
(i) simple examination of observation sensitivity gradients, (ii) impact of innovations
on actual forecast error differences, (iii) sensitivity to hypothetical observations, and
(iv) targeted observing. These examples illustrate the capability of the NAVDAS
adjoint to provide sensitivity information for predictability studies and to study the
performance of the data assimilation and quality control procedures.
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Appendix A: Scripts and Code

Selected scripts, source codes and makefiles used to compile and run the NAVDAS
adjoint are provided on the NRL computer hadley in the directory:

/users_hadley/langland/NAVDAS adjoint/. The NAVDAS adjoint currently
runs on the SGI AMS cluster maintained by Fleet Numerical Meteorology and Oceanog-
raphy Center. There are additional input and data look-up files located on AMS
that are required to run the NAVDAS adjoint.

makefile

NAVDAS _adj.f (source code)

run_navdas__adjoint (c-shell script)

NAVDAS adj.ksh (k-shell script)

gradtp.f (interpolation routine)

track.d1+t1 _GIV_TRACK (targeted dropsonde input file)

For additional information contact Dr. Rolf Langland at: langland@nrlmry.navy.mil.

Appendix B: Derivation of Observation Impact Equation

Consider two nonlinear forecasts of lengths f and g both verifying at a time, ¢,
for which there is a verifying analysis, x,. Forecast x; is started from an analysis
X,, and forecast x, is started 6-h earlier (corresponding to the 6-h interval of the

NAVDAS data assimilation cycle). The 6-h forecast of x, provides the first-guess (or
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background, x,) for the analysis x, that represents the initial conditions for x 5. The
difference between the errors of forecasts x; and Xq is given by Ae} = ef — e, We
wish to derive expressions (or "impact functions”) that can be used to estimate Ae%
using adjoint sensitivity gradients in both the gridpoint space of the forecast model
and the observation space of the data assimilation procedure.

We first define quadratic measures of the two forecast errors using the expressions
er=((xs—x), C(x5—x)), (B1)

€g = < (xg - xt) ) C (Xg - xi)) ) (BQ)

where C is a matrix of energy weighting coefficients for dry total energy (Rosmond

1997). Using (B1) and (B2) we define two costfunctions

Jp=5((xr=x), C (xy—x)) , (B3)

N[ —

Jg = ( (xg - xt)’ C (xg - xt)) ) (B4)

N =

and the corresponding first derivatives

9 ¢y -x), (B)
6Xf f

0J,

5)(—9 = C (Xg - Xt) . (B6)

The true value of e; — e,4, which we will call Aef, is defined as (B1) - (B2). We

wish to have an expression for Ae? that involves sensitivity gradients, and this can
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be written using the gradients defined in (B5) and (B6) as

oJ; 9J,
g _ f g
Aej = <(xf Xg) » Ox ¢ 3xg> ' (B7)

It is easily shown that the RHS of (B7) is equivalent to the difference in forecast
errors ey — . Note that it is necessary to use sensitivity gradients involving both
the f and g trajectories because e — e, is the difference between two quadratic error
expressions.

The difference between the forecast trajectories f and g at initial time is x, — Xy,
the analysis minus the background. If we assume that this initial difference evolves in a
tangent linear sense into a good approximation of the forecast difference x; —x,, then
we can estimate e; — e, using X, — X; and sensitivity gradients which the forecast
model adjoint has mapped back to initial time along the two i"orecast trajectories.
Thus, the adjoint model maps 8J; / 0xy into 0Jy / Ox, along trajectory f and

0J, | 0%, is mapped into 8.J, / Ox; along trajectory g, which allows us to write

aJ; 8J,
g _ f g
def = < (%o — Xp) s x. + axb> . (B8)

Equation (B8) provides an estimate of ey — eg in the gridpoint space of the fore-
cast model. The result de} is not exact, although Aefc in (B7) is exact, because the
sensitivity gradients in (B8) are approximations obtained with the adjoint of NO-
GAPS. From (B8) we can derive an equivalent expression for (56? in the observation
space of the analysis procedure. First, we recognize from Eq. (6) in Section 2.2
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that x, — x, is equivalent to K (y — Hx;), where the Kalman gain matrix K =
P,HT [HPbHT + R] - (Daley and Barker, 2001). We may therefore re-write (BS)

as

el = <K (v - Hxy) an 3J>

B9
S (B9)
Now, since K is linear, we can use the general definition of an adjoint operator

Ky, x) = (y ,KTx) to write

8J; aJ,
8e% = <(y - Hx,) , KT ( 8xf ax,,>> (B10)

The operator KT represents the adjoint of the data assimilation procedure, which

defines a sensitivity gradient in observation space

0J? aJy  0J,
e A f
o =K (G m) (B11)

And using (B11) to substitute into (B10) we obtain (16) used in Section 4.2

g
s = (v-mx), 52, (B12)

which involves only observation space quantities. If there are no observations,
then x, = x; and 6e§- = 0. The accuracy of the observation impact calculated in

observation space (B12) is essentially equivalent to the gridpoint space calculation

(BS).
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Appendix C: Derivation of Sensitivity to Observation Error

The operator representing the solver step in the forward NAVDAS is
M = [HP,H* +R] . (C1)
Using M the ”cob” vector ( z ) is defined as
z=M71d , (C2)
where d represents the innovation vector (y — Hx;). Next, (C2) is re-written as
Mz=d, (C3)
and in perturbation form as
Mz+Mz=dd . (C4)

In (C4) bz represents perturbations of the ”cob” vector, and 6M represents per-
turbations of the M operator, which could include changes to the specified observation

or background error covariance. Next, (C4) can be re-written as
Méz =dd—-Mz , (C5)

and,

§z =M™ (6d - M z) . (C6)

»

From (C6), and noting that M is self-adjoint, we obtain the following adjoint

equations

9J - 18J
ad — M 0z’
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—_— _l___
M ~*Z, (C8)

where (*) denotes a vector Shur product. In (C7) the innovation sensitivity 8.J / od

is equivalent to (0J / dy) if the background is not perturbed. We can thus substitute

from (C7) into (C8) and obtain

aJ oJ

8—1\4—2—5;*2 . (Cg)

The quantity 0J / OM is a vector in observation space that represents the sen-
sitivity of J with respect to the operator M. Here, however, we are just concerned

with sensitivity to the elements r; of the observation covariance matrix R. Then,

assuming the operator Py, is not perturbed and since R is diagonal we obtain

oJ 0J
57{ = —E *xZ, (CIO)

which is (23) in Section 4.5.
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